Sorting refers to arranging data in a particular format. Sorting algorithm specifies the way to arrange data in a particular order. Most common orders are in numerical or lexicographical order.
前言
排序是计算机内经常进行的一种操作,其目的是将一组“无序”的记录序列调整为“有序”的记录序列。分内部排序和外部排序,若整个排序过程不需要访问外存便能完成,则称此类排序问题为内部排序。反之,若参加排序的记录数量很大,整个序列的排序过程不可能在内存中完成,则称此类排序问题为外部排序。内部排序的过程是一个逐步扩大记录的有序序列长度的过程。
排序介绍
排序也称排序算法(Sort Algorithm),排序是将一组数据,依指定的顺序进行排列的过程。
排序的分类:
1) 内部排序:
指将需要处理的所有数据都加载到内部存储器中进行排序。
2) 外部排序法:
数据量过大,无法全部加载到内存中,需要借助外部存储进行排序。
3) 常见的排序算法分类(见下图):
排序算法分类:
算法的时间复杂度
度量一个程序(算法)执行时间的两种方法:
1)事后统计的方法这种方法可行, 但是有两个问题:一是要想对设计的算法的运行性能进行评测,需要实际运行该程序;二是所得时间的统计量依赖于计算机的硬件、软件等环境因素, 这种方式,要在同一台计算机的相同状态下运行,才能比较那个算法速度更快;
2)事前估算的方法通过分析某个算法的时间复杂度来判断哪个算法更优。
时间复杂度
1)一般情况下,算法中的基本操作语句的重复执行次数是问题规模n的某个函数,用T(n)表示,若有某个辅助函数f(n),使得当n趋近于无穷大时,T(n) / f(n) 的极限值为不等于零的常数,则称f(n)是T(n)的同数量级函数。记作 T(n)=O( f(n) ),称O( f(n) ) 为算法的渐进时间复杂度,简称时间复杂度。
2)T(n) 不同,但时间复杂度可能相同。 如:T(n)=n²+7n+6 与 T(n)=3n²+2n+2 它们的T(n) 不同,但时间复杂度相同,都为O(n²)。
3)计算时间复杂度的方法:
用常数1代替运行时间中的所有加法常数 T(n)=n²+7n+6 => T(n)=n²+7n+1
修改后的运行次数函数中,只保留最高阶项 T(n)=n²+7n+1 => T(n) = n²
去除最高阶项的系数 T(n) = n² => T(n) = n² => O(n²)
空间复杂度
1)类似于时间复杂度的讨论,一个算法的空间复杂度(Space Complexity)定义为该算法所耗费的存储空间,它也是问题规模n的函数;
2)空间复杂度(Space Complexity)是对一个算法在运行过程中临时占用存储空间大小的量度。有的算法需要占用的临时工作单元数与解决问题的规模n有关,它随着n的增大而增大,当n较大时,将占用较多的存储单元,例如快速排序和归并排序算法就属于这种情况;
3)在做算法分析时,主要讨论的是时间复杂度。从用户使用体验上看,更看重的程序执行的速度。一些缓存产品(redis, memcache)和算法(基数排序)本质就是用空间换时间。
常用排序算法总结和对比
相关术语解释:
1)稳定:如果a原本在b前面,而a=b,排序之后a仍然在b的前面;
2)不稳定:如果a原本在b的前面,而a=b,排序之后a可能会出现在b的后面;
3)内排序:所有排序操作都在内存中完成;
4)外排序:由于数据太大,因此把数据放在磁盘中,而排序通过磁盘和内存的数据传输才能进行;
5)时间复杂度: 一个算法执行所耗费的时间;
6)空间复杂度:运行完一个程序所需内存的大小;
7)n: 数据规模;
8)k: “桶”的个数;
9)In-place: 不占用额外内存;
10)Out-place: 占用额外内存。
延伸
排序算法总结
韩顺平数据结构和算法
超详细十大经典排序算法总结
Data Structure_Sort Algorithm
Data Structure - Sorting Techniques