Algorithm Merge Sort

Merge Sort is a kind of Divide and Conquer algorithm in computer programrming. It is one of the most popular sorting algorithms and a great way to develop confidence in building recursive algorithms.

前言

    归并排序(MERGE-SORT)是建立在归并操作上的一种有效的排序算法,该算法是采用分治法(Divide and Conquer)的一个非常典型的应用。将已有序的子序列合并,得到完全有序的序列;即先使每个子序列有序,再使子序列段间有序。若将两个有序表合并成一个有序表,称为二路归并。归并排序是一种稳定的排序方法。

归并排序

归并排序思想:

1)将待排序的线性表不断地切分成若干个子表,直到每个子表只包含一个元素,这时,可以认为只包含一个元素的子表是有序表。
2)将子表两两合并,每合并一次,就会产生一个新的且更长的有序表,重复这一步骤,直到最后只剩下一个子表,这个子表就是排好序的线性表。

归并排序解析:


归并排序动图:


归并排序代码:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
/**
* @Auther: Arsenal
* @Date: 2020-03-22 14:05
* @Description: 归并排序
*/
public class MergeSort {
public static void main(String[] args) {
// int arr[] = { 8, 4, 5, 7, 1, 3, 6, 2 };
// System.out.println("原始的数组:" + Arrays.toString(arr));
// int temp[] = new int[arr.length]; //归并排序需要一个额外空间
// mergeSort(arr, 0, arr.length - 1, temp);
// System.out.println("排序后数组:" + Arrays.toString(arr));

int[] arr = new int[8000000];
for (int i = 0; i < 8000000; i++) {
arr[i] = (int) (Math.random() * 8000000);
}
long start = System.currentTimeMillis();
int temp[] = new int[arr.length]; //归并排序需要一个额外空间
mergeSort(arr, 0, arr.length - 1, temp); // 8000000数据 1268 毫秒

long end = System.currentTimeMillis();
System.out.println("8000000个数字排序所用时间:" + (end - start));

}

//分+合方法
public static void mergeSort(int[] arr, int left, int right, int[] temp) {
if (left < right) {
int mid = (left + right) / 2; //中间索引
//向左递归进行分解
mergeSort(arr, left, mid, temp);
//向右递归进行分解
mergeSort(arr, mid + 1, right, temp);
//合并
merge(arr, left, mid, right, temp);

}
}

//合并的方法

/**
* @param arr 排序的原始数组
* @param left 左边有序序列的初始索引
* @param mid 中间索引
* @param right 右边索引
* @param temp 做中转的数组
*/
public static void merge(int[] arr, int left, int mid, int right, int[] temp) {

int i = left; // 初始化i, 左边有序序列的初始索引
int j = mid + 1; //初始化j, 右边有序序列的初始索引
int t = 0; // 指向temp数组的当前索引

//(一)
//先把左右两边(有序)的数据按照规则填充到temp数组
//直到左右两边的有序序列,有一边处理完毕为止
while (i <= mid && j <= right) {//继续
//如果左边的有序序列的当前元素,小于等于右边有序序列的当前元素
//即将左边的当前元素,填充到 temp数组
//然后 t++, i++
if (arr[i] <= arr[j]) {
temp[t] = arr[i];
t += 1;
i += 1;
} else { //反之,将右边有序序列的当前元素,填充到temp数组
temp[t] = arr[j];
t += 1;
j += 1;
}
}

//(二)
//把有剩余数据的一边的数据依次全部填充到temp
while (i <= mid) { //左边的有序序列还有剩余的元素,就全部填充到temp
temp[t] = arr[i];
t += 1;
i += 1;
}

while (j <= right) { //右边的有序序列还有剩余的元素,就全部填充到temp
temp[t] = arr[j];
t += 1;
j += 1;
}


//(三)
//将temp数组的元素拷贝到arr
//注意,并不是每次都拷贝所有
t = 0;
int tempLeft = left; //
//第一次合并 tempLeft = 0 , right = 1 // tempLeft = 2 right = 3 // tL=0 ri=3
//最后一次 tempLeft = 0 right = 7
while (tempLeft <= right) {
arr[tempLeft] = temp[t];
t += 1;
tempLeft += 1;
}

}
}

延伸

    Merge Sort
    图解 归并排序
    Merge Sort Algorithm
    韩顺平数据结构和算法
    Data Structures - Merge Sort Algorithm

Content
  1. 1. 前言
  2. 2. 归并排序
  3. 3. 延伸