Algorithm Dynamic Programming

Dynamic programming approach is similar to divide and conquer in breaking down the problem into smaller and yet smaller possible sub-problems. But unlike, divide and conquer, these sub-problems are not solved independently. Rather, results of these smaller sub-problems are remembered and used for similar or overlapping sub-problems.

前言

    动态规划,将大问题划分为小问题进行解决,从而一步步获取最优解的处理算法。

动态规划算法

动态规划算法介绍

1)动态规划(Dynamic Programming)算法的核心思想是:将大问题划分为小问题进行解决,从而一步步获取最优解的处理算法;
2)动态规划算法与分治算法类似,其基本思想也是将待求解问题分解成若干个子问题,先求解子问题,然后从这些子问题的解得到原问题的解;
3)与分治法不同的是,适合于用动态规划求解的问题,经分解得到子问题往往不是互相独立的。 ( 即下一个子阶段的求解是建立在上一个子阶段的解的基础上,进行进一步的求解 );
4)动态规划可以通过填表的方式来逐步推进,得到最优解。

动态规划算法背包问题:


思路分析

算法的主要思想,利用动态规划来解决。每次遍历到的第i个物品,根据w[i]和v[i]来确定是否需要将该物品放入背包中。即对于给定的n个物品,设v[i]、w[i]分别为第i个物品的价值和重量,C为背包的容量。再令v[i][j]表示在前i个物品中能够装入容量为j的背包中的最大价值。则我们有下面的结果:
(1) v[i][0]=v[0][j]=0; //表示 填入表 第一行和第一列是0;
(2) 当w[i]> j 时:v[i][j]=v[i-1][j] // 当准备加入新增的商品的容量大于 当前背包的容量时,就直接使用上一个单元格的装入策略;
(3) 当j>=w[i]时: v[i][j]=max{v[i-1][j], v[i]+v[i-1][j-w[i]]} 。// 当 准备加入的新增的商品的容量小于等于当前背包的容量,装入的方式: v[i-1][j]: 就是上一个单元格的装入的最大值;v[i] : 表示当前商品的价值;v[i-1][j-w[i]] : 装入i-1商品,到剩余空间j-w[i]的最大值;当j>=w[i]时: v[i][j]=max{v[i-1][j], v[i]+v[i-1][j-w[i]]} 。

背包问题代码:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
/**
* @Auther: Arsenal
* @Date: 2020-03-28 18:48
* @Description: 动态规划算法
*/
public class DynamicProgramming {
public static void main(String[] args) {
int[] w = {1, 4, 3};//物品的重量
int[] val = {1500, 3000, 2000}; //物品的价值 这里val[i] 就是前面讲的v[i]
int m = 4; //背包的容量
int n = val.length; //物品的个数


//创建二维数组,
//v[i][j] 表示在前i个物品中能够装入容量为j的背包中的最大价值
int[][] v = new int[n + 1][m + 1];
//为了记录放入商品的情况,我们定一个二维数组
int[][] path = new int[n + 1][m + 1];

//初始化第一行和第一列, 这里在本程序中,可以不去处理,因为默认就是0
for (int i = 0; i < v.length; i++) {
v[i][0] = 0; //将第一列设置为0
}
for (int i = 0; i < v[0].length; i++) {
v[0][i] = 0; //将第一行设置0
}


//根据前面得到公式来动态规划处理
for (int i = 1; i < v.length; i++) { //不处理第一行 i是从1开始的
for (int j = 1; j < v[0].length; j++) {//不处理第一列, j是从1开始的
//公式
if (w[i - 1] > j) { // 因为我们程序i 是从1开始的,因此原来公式中的 w[i] 修改成 w[i-1]
v[i][j] = v[i - 1][j];
} else {
//说明:
//因为我们的i 从1开始的, 因此公式需要调整成
//v[i][j]=Math.max(v[i-1][j], val[i-1]+v[i-1][j-w[i-1]]);
//v[i][j] = Math.max(v[i - 1][j], val[i - 1] + v[i - 1][j - w[i - 1]]);
//为了记录商品存放到背包的情况,我们不能直接的使用上面的公式,需要使用if-else来体现公式
if (v[i - 1][j] < val[i - 1] + v[i - 1][j - w[i - 1]]) {
v[i][j] = val[i - 1] + v[i - 1][j - w[i - 1]];
//把当前的情况记录到path
path[i][j] = 1;
} else {
v[i][j] = v[i - 1][j];
}

}
}
}

//输出一下v 看看目前的情况
for (int i = 0; i < v.length; i++) {
for (int j = 0; j < v[i].length; j++) {
System.out.print(v[i][j] + " ");
}
System.out.println();
}

System.out.println("============================");
//输出最后我们是放入的哪些商品
//遍历path, 这样输出会把所有的放入情况都得到, 其实我们只需要最后的放入
// for(int i = 0; i < path.length; i++) {
// for(int j=0; j < path[i].length; j++) {
// if(path[i][j] == 1) {
// System.out.printf("第%d个商品放入到背包\n", i);
// }
// }
// }

//动脑筋
int i = path.length - 1; //行的最大下标
int j = path[0].length - 1; //列的最大下标
while (i > 0 && j > 0) { //从path的最后开始找
if (path[i][j] == 1) {
System.out.printf("第%d个商品放入到背包\n", i);
j -= w[i - 1]; //w[i-1]
}
i--;
}
}
}

延伸

    图解动态规划
    动态规划套路详解
    动态规划-百度百科
    韩顺平数据结构和算法
    Data Structures - Dynamic Programming

Content
  1. 1. 前言
  2. 2. 动态规划算法
  3. 3. 延伸