Algorithm Floyd

Floyd’s algorithm is an algorithm for finding shortest paths in a weighted graph with positive or negative edge weights (but with no negative cycles). A single execution of the algorithm will find the lengths (summed weights) of shortest paths between all pairs of vertices.

前言

    弗洛伊德算法是一种在具有正或负边缘权重(但没有负周期)的加权图中找到最短路径的算法。算法的单个执行将找到所有顶点对之间的最短路径的长度(加权)。 虽然它不返回路径本身的细节,但是可以通过对算法的简单修改来重建路径。 该算法的版本也可用于查找关系R的传递闭包,或(与Schulze投票系统相关)在加权图中所有顶点对之间的最宽路径。

弗洛伊德算法

弗洛伊德算法介绍:

1)和Dijkstra算法一样,弗洛伊德(Floyd)算法也是一种用于寻找给定的加权图中顶点间最短路径的算法。该算法名称以创始人之一、1978年图灵奖获得者、斯坦福大学计算机科学系教授罗伯特·弗洛伊德命名;
2)弗洛伊德算法(Floyd)计算图中各个顶点之间的最短路径;
3)迪杰斯特拉算法用于计算图中某一个顶点到其他顶点的最短路径;
4)弗洛伊德算法 VS 迪杰斯特拉算法:迪杰斯特拉算法通过选定的被访问顶点,求出从出发访问顶点到其他顶点的最短路径;弗洛伊德算法中每一个顶点都是出发访问点,所以需要将每一个顶点看做被访问顶点,求出从每一个顶点到其他顶点的最短路径。

弗洛伊德算法步骤:

1)设置顶点vi到顶点vk的最短路径已知为Lik,顶点vk到vj的最短路径已知为Lkj,顶点vi到vj的路径为Lij,则vi到vj的最短路径为:min((Lik+Lkj),Lij),vk的取值为图中所有顶点,则可获得vi到vj的最短路径;
2)至于vi到vk的最短路径Lik或者vk到vj的最短路径Lkj,是以同样的方式获得;
3)弗洛伊德(Floyd)算法图解分析-举例说明。

弗洛伊德最短路径问题:


弗洛伊德算法代码:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
import java.util.Arrays;

/**
* @Auther: Arsenal
* @Date: 2020-03-30 19:16
* @Description: 弗洛伊德算法
*/
public class Floyd {

public static void main(String[] args) {
// 测试看看图是否创建成功
char[] vertex = {'A', 'B', 'C', 'D', 'E', 'F', 'G'};
//创建邻接矩阵
int[][] matrix = new int[vertex.length][vertex.length];
final int N = 65535;
matrix[0] = new int[]{0, 5, 7, N, N, N, 2};
matrix[1] = new int[]{5, 0, N, 9, N, N, 3};
matrix[2] = new int[]{7, N, 0, N, 8, N, N};
matrix[3] = new int[]{N, 9, N, 0, N, 4, N};
matrix[4] = new int[]{N, N, 8, N, 0, 5, 4};
matrix[5] = new int[]{N, N, N, 4, 5, 0, 6};
matrix[6] = new int[]{2, 3, N, N, 4, 6, 0};

//创建 FGraph 对象
FGraph graph = new FGraph(vertex.length, matrix, vertex);
//调用弗洛伊德算法
graph.floyd();
graph.show();
}

}

// 创建图
class FGraph {
private char[] vertex; // 存放顶点的数组
private int[][] dis; // 保存,从各个顶点出发到其它顶点的距离,最后的结果,也是保留在该数组
private int[][] pre;// 保存到达目标顶点的前驱顶点

// 构造器

/**
* @param length 大小
* @param matrix 邻接矩阵
* @param vertex 顶点数组
*/
public FGraph(int length, int[][] matrix, char[] vertex) {
this.vertex = vertex;
this.dis = matrix;
this.pre = new int[length][length];
// 对pre数组初始化, 注意存放的是前驱顶点的下标
for (int i = 0; i < length; i++) {
Arrays.fill(pre[i], i);
}
}

// 显示pre数组和dis数组
public void show() {

//为了显示便于阅读,我们优化一下输出
char[] vertex = {'A', 'B', 'C', 'D', 'E', 'F', 'G'};
for (int k = 0; k < dis.length; k++) {
// 先将pre数组输出的一行
for (int i = 0; i < dis.length; i++) {
System.out.print(vertex[pre[k][i]] + " ");
}
System.out.println();
// 输出dis数组的一行数据
for (int i = 0; i < dis.length; i++) {
System.out.print("(" + vertex[k] + "到" + vertex[i] + "的最短路径是" + dis[k][i] + ") ");
}
System.out.println();
System.out.println();

}

}

//弗洛伊德算法, 比较容易理解,而且容易实现
public void floyd() {
int len = 0; //变量保存距离
//对中间顶点遍历, k 就是中间顶点的下标 [A, B, C, D, E, F, G]
for (int k = 0; k < dis.length; k++) { //
//从i顶点开始出发 [A, B, C, D, E, F, G]
for (int i = 0; i < dis.length; i++) {
//到达j顶点 // [A, B, C, D, E, F, G]
for (int j = 0; j < dis.length; j++) {
len = dis[i][k] + dis[k][j];// => 求出从i 顶点出发,经过 k中间顶点,到达 j 顶点距离
if (len < dis[i][j]) {//如果len小于 dis[i][j]
dis[i][j] = len;//更新距离
pre[i][j] = pre[k][j];//更新前驱顶点
}
}
}
}
}
}

延伸

    弗洛伊德(floyd)算法
    Floyd算法-百度百科
    韩顺平数据结构和算法
    Floyd–Warshall algorithm - Wikipedia
    Floyd算法详解——包括解题步骤与编程

Content
  1. 1. 前言
  2. 2. 弗洛伊德算法
  3. 3. 延伸